skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pham, Tien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the last decade, facial landmark tracking and 3D reconstruction have gained considerable attention due to their numerous applications such as human-computer interactions, facial expression analysis, and emotion recognition, etc. Traditional approaches require users to be confined to a particular location and face a camera under constrained recording conditions (e.g., without occlusions and under good lighting conditions). This highly restricted setting prevents them from being deployed in many application scenarios involving human motions. In this paper, we propose the first single-earpiece lightweight biosensing system, BioFace-3D, that can unobtrusively, continuously, and reliably sense the entire facial movements, track 2D facial landmarks, and further render 3D facial animations. Our single-earpiece biosensing system takes advantage of the cross-modal transfer learning model to transfer the knowledge embodied in a high-grade visual facial landmark detection model to the low-grade biosignal domain. After training, our BioFace-3D can directly perform continuous 3D facial reconstruction from the biosignals, without any visual input. Without requiring a camera positioned in front of the user, this paradigm shift from visual sensing to biosensing would introduce new opportunities in many emerging mobile and IoT applications. Extensive experiments involving 16 participants under various settings demonstrate that BioFace-3D can accurately track 53 major facial landmarks with only 1.85 mm average error and 3.38\% normalized mean error, which is comparable with most state-of-the-art camera-based solutions. The rendered 3D facial animations, which are in consistency with the real human facial movements, also validate the system's capability in continuous 3D facial reconstruction. 
    more » « less
  2. Face touch is an unconscious human habit. Frequent touching of sensitive/mucosal facial zones (eyes, nose, and mouth) increases health risks by passing pathogens into the body and spreading diseases. Furthermore, accurate monitoring of face touch is critical for behavioral intervention. Existing monitoring systems only capture objects approaching the face, rather than detecting actual touches. As such, these systems are prone to false positives upon hand or object movement in proximity to one's face (e.g., picking up a phone). We present FaceSense, an ear-worn system capable of identifying actual touches and differentiating them between sensitive/mucosal areas from other facial areas. Following a multimodal approach, FaceSense integrates low-resolution thermal images and physiological signals. Thermal sensors sense the thermal infrared signal emitted by an approaching hand, while physiological sensors monitor impedance changes caused by skin deformation during a touch. Processed thermal and physiological signals are fed into a deep learning model (TouchNet) to detect touches and identify the facial zone of the touch. We fabricated prototypes using off-the-shelf hardware and conducted experiments with 14 participants while they perform various daily activities (e.g., drinking, talking). Results show a macro-F1-score of 83.4% for touch detection with leave-one-user-out cross-validation and a macro-F1-score of 90.1% for touch zone identification with a personalized model. 
    more » « less